Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition.
نویسندگان
چکیده
Ti-based fumaric acid hybrid thin films were successfully prepared using inorganic TiCl4 and organic fumaric acid as precursors by molecular layer deposition (MLD). The effect of deposition temperature from 180 °C to 350 °C on the growth rate, composition, chemical state, and topology of hybrid films has been investigated systematically by means of a series of analytical tools such as spectroscopic ellipsometry, atomic force microscopy (AFM), high resolution X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The MLD process of the Ti-fumaric acid shows self-limiting surface reaction with a reasonable growth rate of ∼0.93 Å per cycle and small surface roughness of ∼0.59 nm in root-mean-square value at 200 °C. A temperature-dependent growth characteristic has been observed in the hybrid films. On increasing the temperature from 180 °C to 300 °C, the growth rate decreases from 1.10 to 0.49 Å per cycle and the XPS composition of the film's C : O : Ti ratio changes from 8.35 : 7.49 : 1.00 to 4.66 : 4.80 : 1.00. FTIR spectra indicate that the hybrid films show bridging bonding mode at a low deposition temperature of 200 °C and bridging/bidentate mixed bonding mode at elevated deposition temperatures of 250 and 300 °C. The higher C and O amounts deviating from the ideal composition may be ascribed to increased organic incorporation into the hybrid films at lower deposition temperature and temperature-dependent density of reactive sites (-OH). The composition of hybrid films grown at 350 °C shows a dramatic decrease in C and O elemental composition (C : O : Ti = 1.97 : 2.76 : 1.00) due to the thermal decomposition of the fumaric acid precursor. The produced by-product H2O changes the structure of the hybrid films, resulting in the formation of more Ti-O bonds at high temperatures. The stability of the hybrid films against chemical and thermal treatment, and long-term storage by vacuum-packing was explored carefully. It is found that the ultrathin hybrid film can be transformed into TiO2 nanoparticles via various post deposition annealing processes with different topographies. Finally, the charge trapping ability of the hybrid film is confirmed by fabricating a charge trapping memory capacitor in which the hybrid film was inserted as a charge trapping layer.
منابع مشابه
Atomic/molecular layer deposition of hybrid inorganic-organic thin films
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Pia Sundberg Name of the doctoral dissertation Atomic/molecular layer deposition of hybrid inorganic-organic thin films Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 201/2014 Field of research Inorganic Chemistry Manuscript submitted 11 Se...
متن کاملFilm growth model of atomic layer deposition for multicomponent thin films
Atomic layer deposition sALDd has become an essential technique for fabricating nano-scale thin films in the microelectronics industry, and its applications have been extended to multicomponent thin films, as well as to single metal oxide and nitride films. A mathematical film growth model for ALD is proposed to predict the deposition characteristics of multicomponent thin films grown mainly in...
متن کاملIron-based inorganic-organic hybrid and superlattice thin films by ALD/MLD.
Here we present novel layer-by-layer deposition processes for the fabrication of inorganic-organic hybrid thin films of the (-Fe-O-C6H4-O-)n type and also superlattices where thicker iron oxide layers alternate with monomolecular-thin organic layers. The processes are based on a combination of atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques where the cyclopentadien...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملALD/MLD processes for Mn and Co based hybrid thin films.
Here we report the growth of novel transition metal-organic thin-film materials consisting of manganese or cobalt as the metal component and terephthalate as the rigid organic backbone. The hybrid thin films are deposited by the currently strongly emerging atomic/molecular layer deposition (ALD/MLD) technique using the combination of a metal β-diketonate, i.e. Mn(thd)3, Co(acac)3 or Co(thd)2, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 44 33 شماره
صفحات -
تاریخ انتشار 2015